Answer:
The amount of rains that can be stored in the two silos combined is 5242.53 ft³
Explanation:
The parameters given are;
Diameter, D, of the silos = 15 feet
Height, h₁, of the larger silo = 18 feet 10 inches = 18.83 feet
Height, h₂, of the shorter silo = 10 feet 10 inches = 10.83 feet
The volume, V, of the cylindrical shape is given by the formula;
Volume = Area of base × Height
[tex]Area \, of \, the \, base = \pi \times \dfrac{D^{2}}{4}[/tex]
[tex]\therefore Volume = \pi \times \dfrac{D^{2}}{4}\times h[/tex]
Therefore, for the larger silo, we have;
[tex]Volume, V_1 = \pi \times \dfrac{D^{2}}{4}\times h_1[/tex]
[tex]V_1 = \pi \times \dfrac{15^{2}}{4}\times 18.83 = 3328.12 \ ft^3[/tex]
for the shorter silo, we have;
[tex]Volume, V_2 = \pi \times \dfrac{D^{2}}{4}\times h_2[/tex]
[tex]V_2 = \pi \times \dfrac{15^{2}}{4}\times 10.83 = 1914.41\ ft^3[/tex]
The amount of rains that can be stored in the two silos combined = 3328.12 ft² + 1914.41 ft² = 5242.53 ft².