What is the following quotient? 6-3(3 sqrt 6)/3 sqrt 9

Answer:
a. 2(^3 sqrt 3) - ^3 sqrt 18
Step-by-step explanation:
got it right on edge
[tex]\frac{6-3(\sqrt[3]{6})}{\sqrt[3]{9}}[/tex][tex]\frac{6-3(\sqrt[3]{6})}{\sqrt[3]{9}}[/tex][tex]2(\sqrt[3]{3})-\sqrt[3]{18}[/tex] option (A) is Correct.
The problem can be solved by following steps.
The expression given is [tex]\frac{6-3(\sqrt[3]{6})}{\sqrt[3]{9}}[/tex]
So , The first step we will do is Rationalize the figure
= [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }}{\sqrt[3]{9}*\sqrt[3]{9} }[/tex]
The product of radicals with the same index equals the radical of the product:[tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }} {\sqrt[3]{9*9^2} }[/tex]
Simplify using exponent with same base
[tex]a^{n}*a^{m} = a^{a+m}[/tex]
= [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }} {\sqrt[3]{9^1+^2} }[/tex]
Calculate the sum or difference: [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }} {\sqrt[3]{9^3} }[/tex]
Simplify the radical expression: [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }} {{9} }[/tex]
Calculate the power : [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt[3]{3} }} {{9} }[/tex]
Cross out the common factor: [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt[3]{3} }} {{3} }[/tex]
Factor Greatest Common Factors : [tex]\frac{3*2\sqrt[3]{3}-\sqrt[3]{18} }{3}[/tex][tex]3*2\sqrt[3]{3}-\sqrt[3]{18}}[/tex]
Reduce the fraction : [tex]2\sqrt[3]{3}-\sqrt[3]{18}}[/tex]
Hence the First option is correct
Learn more about Quotient here
https://brainly.com/question/673545
#SPJ2