Respuesta :

Answer:

a. 2(^3 sqrt 3) - ^3 sqrt 18

Step-by-step explanation:

got it right on edge

Ver imagen luvlala

[tex]\frac{6-3(\sqrt[3]{6})}{\sqrt[3]{9}}[/tex][tex]\frac{6-3(\sqrt[3]{6})}{\sqrt[3]{9}}[/tex][tex]2(\sqrt[3]{3})-\sqrt[3]{18}[/tex] option (A)  is Correct.

What is Rationalization?

  • It is a process that finds application in elementary algebra, where it is used to eliminate the irrational number in the denominator.

How to Solve the problem ?

The problem can be solved by following steps.

The expression given is [tex]\frac{6-3(\sqrt[3]{6})}{\sqrt[3]{9}}[/tex]

So , The first step we will do is Rationalize the figure

= [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }}{\sqrt[3]{9}*\sqrt[3]{9} }[/tex]

The product of radicals with the same index equals the radical of the product:[tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }} {\sqrt[3]{9*9^2} }[/tex]

Simplify using exponent with same base

[tex]a^{n}*a^{m} = a^{a+m}[/tex]

= [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }} {\sqrt[3]{9^1+^2} }[/tex]

Calculate the sum or difference: [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }} {\sqrt[3]{9^3} }[/tex]

Simplify the radical expression: [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt{9^2} }} {{9} }[/tex]

Calculate the power : [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt[3]{3} }} {{9} }[/tex]

Cross out the common factor: [tex]\frac{6-3(\sqrt[3]{6})*3 {\sqrt[3]{3} }} {{3} }[/tex]

Factor Greatest Common Factors : [tex]\frac{3*2\sqrt[3]{3}-\sqrt[3]{18} }{3}[/tex][tex]3*2\sqrt[3]{3}-\sqrt[3]{18}}[/tex]

Reduce the fraction : [tex]2\sqrt[3]{3}-\sqrt[3]{18}}[/tex]

Hence the First option is correct

Learn more about Quotient here

https://brainly.com/question/673545

#SPJ2