Respuesta :

Answer:

Area of rectangle = [tex]196\,m^2[/tex]

Length of rectangle = 14 m

Width of rectangle = 14 m

Step-by-step explanation:

Given:

Perimeter of rectangle is 56 m

To find: the maximized area of a rectangle and the length and width

Solution:

A function [tex]y=f(x)[/tex] has a point of maxima at [tex]x=x_0[/tex] if [tex]f''(x_0)<0[/tex]

Let x, y denotes length and width of the rectangle.

Perimeter of rectangle = 2( length + width )

[tex]=2(x+y)[/tex]

Also, perimeter of rectangle is equal to 56 m.

So,

[tex]56=2(x+y)\\x+y=28\\y=28-x[/tex]

Let A denotes area of rectangle.

A = length × width

[tex]A=xy\\=x(28-x)\\=28x-x^2[/tex]

Differentiate with respect to x

[tex]\frac{dA}{dx}=28-2x[/tex]

Put [tex]\frac{dA}{dx}=0[/tex]

[tex]28-2x=0\\2x=28\\x=14[/tex]

Also,

[tex]\frac{d^2A}{dx^2}=-2<0[/tex]

At x = 14, [tex]\frac{d^2A}{dx^2}=-2<0[/tex]

So, x = 14 is a point of maxima

So,

[tex]y=28-x=28-14=14[/tex]

Area of rectangle:

[tex]A=xy=14(14)=196\,m^2[/tex]

Length of rectangle = 14 m

Width of rectangle = 14 m