Respuesta :
Answer:
[tex]\large \boxed{\text{-2.48 kJ}}[/tex]
Explanation:
1. Calculate the moles of CO₂ formed
2CO + O₂ ⟶ 2CO₂
n/mol: 2.00 2.00
The molar ratio is 2 mol CO₂:2 mol CO.
[tex]\text{Moles of CO}_{2} = \text{2 mol CO} \times \dfrac{\text{2 mol CO}_{2}}{\text{2 mol CO}}= \text{2.00 mol CO}_{2}[/tex]
2. Calculate the change in the number of moles
We started with 3.00 mol of gas and ended with 2.00 mol.
Δn = n₂ - n₁ = 2.00 mol - 3.00 mol = -1.00 mol
3. Calculate the work done
(a) Convert the temperature to kelvins
T = (25.8 + 273.15) K = 298.95 K
(b) Calculate the work
[tex]w = -p\Delta V = -\Delta nRT = -1.00 \text{ mol} \times 8.314 \text{ J}\cdot\text{K}^{-1} \text{mol}^{-1} \times 298.95 \text{ K}\\= \text{-2480 J} = \textbf{-2.48 kJ}\\\text{The work done is $\large \boxed{\textbf{-2.48 kJ}}$}[/tex]
Work is equivalent to pressure multiplied by length. Work occurs when there is movement in the direction of the force. The SI unit of work is the joule (J), and the further calculation can be defined as follows:
Given:
Pressure= 1.00 atm
Temperature [tex]\bold{= 25.8^{\circ}\ C}[/tex]
Given equation:
[tex]\bold{2 CO\ (g) + O_2\ (g)\longrightarrow 2 CO_2\ (g)}\\\\[/tex]
Converting the temperature [tex]\bold{^{\circ}\ C}[/tex] to [tex]\bold{K}[/tex]:
[tex]\bold{= 25.8 + 273.15}\\\\\bold{= 298.95\ K}[/tex]
Calculating the [tex]\bold{\Delta n}[/tex] value:
[tex]\Delta n = 2 - (2 + 1) = -1[/tex]
Calculating work:
[tex]\bold{w = \Delta n \times R T}[/tex]
[tex]\bold{= - 1 \times 8.314 \times 298.95}\\\\ \bold{= -2,485.4703\ J} \\\\ \bold{=- 2.48\ KJ}[/tex]
Therefore, the final answer is "-2.48 KJ".
Learn more:
brainly.com/question/24855979