Urgent please help. Amanda surveyed 20 juniors and seniors at delamar high school to find the number of hours per week they spend working at part-time jobs. Her results are shown below.
Look at picture

Urgent please help Amanda surveyed 20 juniors and seniors at delamar high school to find the number of hours per week they spend working at parttime jobs Her re class=

Respuesta :

Answer:

The correct statement is (C).

Step-by-step explanation:

The data for the number of hours per week they spend working at part-time jobs by 20 juniors and seniors at Delmar high school is:

Juniors: 20, 10, 20, 10, 15, 0, 0, 10, 20, 15

Seniors: 20, 20, 10, 10, 0, 0, 0, 10, 0, 10

Compute the mean of both the data:

[tex]\mu_{J}=\frac{1}{n}\sum\limits^{n}_{i=1}{x_{iJ}}[/tex]

     [tex]=\frac{1}{10}\times [20+10+20+10+15+0+0+10+20+15]\\\\=\frac{120}{10}\\\\=12[/tex]

[tex]\mu_{S}=\frac{1}{n}\sum\limits^{n}_{i=1}{x_{iS}}[/tex]

     [tex]=\frac{1}{10}\times [20+ 20+10+10+0+0+0+10+0+10]\\\\=\frac{80}{10}\\\\=8[/tex]

Compute the range of both the data:

[tex]Range_{J}=Max._{J}-Min._{J}[/tex]

            [tex]=20-0\\=20[/tex]

[tex]Range_{S}=Max._{S}-Min._{S}[/tex]

            [tex]=20-0\\=20[/tex]

It can be seen that the range of both the data is same, i.e. 20.

Thus, the correct statement is (C).