Answer:
The correct statement is (C).
Step-by-step explanation:
The data for the number of hours per week they spend working at part-time jobs by 20 juniors and seniors at Delmar high school is:
Juniors: 20, 10, 20, 10, 15, 0, 0, 10, 20, 15
Seniors: 20, 20, 10, 10, 0, 0, 0, 10, 0, 10
Compute the mean of both the data:
[tex]\mu_{J}=\frac{1}{n}\sum\limits^{n}_{i=1}{x_{iJ}}[/tex]
[tex]=\frac{1}{10}\times [20+10+20+10+15+0+0+10+20+15]\\\\=\frac{120}{10}\\\\=12[/tex]
[tex]\mu_{S}=\frac{1}{n}\sum\limits^{n}_{i=1}{x_{iS}}[/tex]
[tex]=\frac{1}{10}\times [20+ 20+10+10+0+0+0+10+0+10]\\\\=\frac{80}{10}\\\\=8[/tex]
Compute the range of both the data:
[tex]Range_{J}=Max._{J}-Min._{J}[/tex]
[tex]=20-0\\=20[/tex]
[tex]Range_{S}=Max._{S}-Min._{S}[/tex]
[tex]=20-0\\=20[/tex]
It can be seen that the range of both the data is same, i.e. 20.
Thus, the correct statement is (C).