Find the radius of the circle, if the area of the big square is 30 more than the area of the small square.

Answer:
[tex]Area \ of \ the \ circle = \dfrac{(31+2\sqrt{30}) \cdot (HG)^2 \cdot \pi }{4}[/tex]
Step-by-step explanation:
The area of the of the bi square = 30 × Area of small square
Hence
S² = 30×s²
S = s×√30
Where:
S = Side length of big square = CD
s = Side length of small square = HG
Diameter of the circle = Side length of big square + Side length of small square
∴ Diameter of the circle = s + s×√30 = s × (1 + √30)
Area of the circle = π × r²
Area of the circle, A = π × ((s × (1 + √30))/2)²
[tex]A = \dfrac{(31+2\sqrt{30}) \cdot (HG)^2 \cdot \pi }{4}[/tex]