Respuesta :

Answer:

[tex]Area \ of \ the \ circle = \dfrac{(31+2\sqrt{30}) \cdot (HG)^2 \cdot \pi }{4}[/tex]

Step-by-step explanation:

The area of the of the bi square = 30 × Area of small square

Hence

S² = 30×s²

S = s×√30

Where:

S = Side length of big square = CD

s = Side length of small square = HG

Diameter of the circle = Side length of big square + Side length of small square

∴ Diameter of the circle = s + s×√30 = s × (1 + √30)

Area of the circle = π × r²

Area of the circle, A = π × ((s × (1 + √30))/2)²

[tex]A = \dfrac{(31+2\sqrt{30}) \cdot (HG)^2 \cdot \pi }{4}[/tex]