Respuesta :
Answer:
Given that ΔTUV is a right triangle. The measure of ∠V=90°, the measure of ∠U=55°, and VT = 82 feet.
We need to determine the length of TU.
Length of TU:
The length of TU can be determined using the trigonometric ratio.
Thus, we have;
where , and
Substituting the values, we get;
Simplifying, we get;
Rounding off to the nearest tenth, we get;
Thus, the length of TU is 100.1 feet.
Step-by-step explanation:
Answer:
94.4
Step-by-step explanation:
\tan U = \frac{\text{opposite}}{\text{adjacent}}=\frac{88}{x}
tanU=
adjacent
opposite
=
x
88
\tan 43=\frac{88}{x}
tan43=
x
88
x\tan 43=88
xtan43=88
Cross multiply.
\frac{x\tan 43}{\tan 43}=\frac{88}{\tan 43}
tan43
xtan43
=
tan43
88
Divide each side by tan 43.
x=\frac{88}{\tan 43}=94.3684\approx 94.4\text{ feet}
x=
tan43
88
=94.3684≈94.4 feet
Type into calculator and roundto the nearest tenth of a foot.