Respuesta :
Answer:
The measure of angle BCD is 117°.
Step-by-step explanation:
A parallelogram is a quadrilateral with two pairs of side with same length and two pairs of angles. It is given that sum of all internal angles is equal to 360 degrees. According to the statement of problem, it is also given that AD = 28 feet, AB = 20 feet and AC = 26 feet (See attachment). As first step it is needed to find the value of the angle ABC by the Law of Cosine:
[tex]AC^{2} = AB^{2} + AD^{2} - 2\cdot AB \cdot AD \cdot \cos B[/tex]
[tex]\cos B = -\frac{AC^{2}-AB^{2}-AD^{2}}{2\cdot AB \cdot AD}[/tex]
[tex]\cos B = -\frac{26^{2}-20^{2}-28^{2}}{2\cdot (20)\cdot (28)}[/tex]
[tex]\cos B = 0.454[/tex]
[tex]B \approx 63^{\circ}[/tex]
The measure of the angle C can be obtained by using the following identity:
[tex]2\cdot B + 2\cdot C = 360^{\circ}[/tex]
[tex]2\cdot C = 360^{\circ} - 2\cdot B[/tex]
[tex]C = 180^{\circ} - B[/tex]
[tex]C = 180^{\circ} - 63^{\circ}[/tex]
[tex]C = 117^{\circ}[/tex]
The measure of angle BCD is 117°.

Answer:
The measure of angle BCD is [tex]117^{0}[/tex].
Step-by-step explanation:
A parallelogram is a four sided shape with equal and parallel sides.
From the given dimension, we have two triangles ABC and ADC.
From ΔABC, applying the cosine rule;
[tex]c^{2}[/tex] = [tex]a^{2}[/tex] + [tex]b^{2}[/tex] - 2ab Cos C
Let a = 28, b = 26 and c = 20. So that;
[tex]20^{2}[/tex] = [tex]28^{2}[/tex] + [tex]26^{2}[/tex] - 2 × 28 × 26 Cos C
400 = 784 + 676 - 1450 Cos C
400 = 1460 - 1450 Cos C
1450 Cos C = 1460 - 400
1450 Cos C = 1060
Cos C = 0.7310
C = [tex]43.03^{0}[/tex]
⇒ <ACB = [tex]43.03^{0}[/tex]
Also from ΔADC, applying the Cosine rule;
[tex]c^{2}[/tex] = [tex]a^{2}[/tex] + [tex]b^{2}[/tex] - 2ab Cos C
Let a = 20, b = 26 and c = 28
[tex]28^{2}[/tex] = [tex]20^{2}[/tex] + [tex]26^{2}[/tex] - 2 × 20 × 26 Cos C
784 = 400 + 676 - 1040 Cos C
784 = 1076 - 1040 Cos C
1040 Cos C = 1076 - 784
1040 Cos C = 292
Cos C = 0.2808
C = [tex]73.69^{0}[/tex]
⇒ <ACD = [tex]73.69^{0}[/tex]
<BCD = <ACB + <ACD
= [tex]43.03^{0}[/tex] + [tex]73.69^{0}[/tex]
= [tex]116.72^{0}[/tex]
The measure of angle BCD is [tex]117^{0}[/tex].