Respuesta :
Answer:
The solution of the given equation is
[tex]x = \frac{9}{1-e^{3} }[/tex]
Step-by-step explanation:
Given Log(x+9) - log x =3
By using Formula log a -log b = log(a/b)
[tex]log (\frac{x+9}{x} ) = 3[/tex] ...(i)
we apply another logarithmic formula
[tex]log^{x} _{e} = y[/tex] then x = [tex]e^{y}[/tex]
Now From (i) we get
[tex]\frac{x+9}{x} = e^{3}[/tex]
On cross multiplication , we get
x +9 = e³ x
x +9 -e³x =0
x (1 - e³) = -9
[tex]x = \frac{-9}{1-e^{3} } = \frac{9}{1-e^{3} }[/tex]
Final answer:-
The solution of the given equation is
[tex]x = \frac{9}{1-e^{3} }[/tex]
Answer:
decimal form X=0.009
exact form x=1/100
Step-by-step explanation: