On a linear X temperature scale, water freezes at −115.0°X and boils at 325.0°X. On a linear Y temperature scale, water freezes at −65.00°Y and boils at −25.00°Y. A temperature of 50.00°Y corresponds to what temperature on the X scale?

Respuesta :

Answer:

The current temperature on the X scale is 1150 °X.

Step-by-step explanation:

Let is determine first the ratio of change in X linear temperature scale to change in Y linear temperature scale:

[tex]r = \frac{\Delta T_{X}}{\Delta T_{Y}}[/tex]

[tex]r = \frac{325\,^{\circ}X-(-115\,^{\circ}X)}{-25\,^{\circ}Y - (-65.00\,^{\circ}Y)}[/tex]

[tex]r = 11\,\frac{^{\circ}X}{^{\circ}Y}[/tex]

The difference between current temperature in Y linear scale with respect to freezing point is:

[tex]\Delta T_{Y} = 50\,^{\circ}Y - (-65\,^{\circ}Y)[/tex]

[tex]\Delta T_{Y} = 115\,^{\circ}Y[/tex]

The change in X linear scale is:

[tex]\Delta T_{X} = r\cdot \Delta T_{Y}[/tex]

[tex]\Delta T_{X} = \left(11\,\frac{^{\circ}X}{^{\circ}Y} \right)\cdot (115\,^{\circ}Y)[/tex]

[tex]\Delta T_{X} = 1265\,^{\circ}X[/tex]

Lastly, the current temperature on the X scale is:

[tex]T_{X} = -115\,^{\circ}X + 1265\,^{\circ}X[/tex]

[tex]T_{X} = 1150\,^{\circ}X[/tex]

The current temperature on the X scale is 1150 °X.