The vertex of a figure is located at (2,4). The figure is rotated and the image of the vertex is located at (4,2).
Which of these describes the transformation?

Respuesta :

Answer:

Horizontal translation right '2' units  and Vertical translation down '2' units  

The transformation  of the given vertex (2 , 4)→( 2 +2, 4-2)    

The transformation (2 , 4)→( 4, 2)          

Step-by-step explanation:

Explanation:-

Type of transformation                                change to co-ordinate point

Vertical translation up 'd' units                         (x , y)→(x , y+d)      

Vertical translation down 'd' units                    (x , y)→(x , y-d)        

Horizontal translation left 'c' units                    ( (x , y)→(x-c , y)

Horizontal translation right 'c' units                    ( (x , y)→(x +c , y)  

Reflection over x-axis                                         ( (x , y)→(x , -y)

Reflection over y-axis                                         ( (x , y)→(-x , y)

Now given data The vertex of a figure is located at (2,4)

by above table we observe that

Horizontal translation right '2' units  and Vertical translation down '2' units  

so the transformation (2 , 4)→( 2 +2, 4-2)    

     The transformation (2 , 4)→( 4, 2)