Respuesta :

Answer:

f(x) has a minimum value is zero at  [tex]x = \frac{1}{2}[/tex]

Step-by-step explanation:

Explanation:-

step(i):-

Given function y =f(x)=  x² - x + 1/4 ....(i)

Differentiating equation (i) with respective to 'x', we get

[tex]y^{l} =\frac{d y}{d x} = 2 x -1 +0[/tex]  ...(ii)

Equating Zero   2 x - 1 = 0

                            [tex]2 x = 1[/tex]

                             [tex]x = \frac{1}{2}[/tex]

Step(ii):-

Again differentiating with respective to 'x', we get

[tex]y^{ll} =\frac{d^2 y}{d x^2} = 2 (1) >0[/tex]

f(x) has a minimum value at   [tex]x = \frac{1}{2}[/tex]

Step(iii):-

y =f(x) =  x² - x + 1/4

Put [tex]x = \frac{1}{2}[/tex]  

         [tex]f( \frac{1}{2}) = (\frac{1}{2} )2-\frac{1}{2} +\frac{1}{4}[/tex]

        [tex]f(\frac{1}{2} ) = \frac{2}{4} -\frac{1}{2}[/tex]

     [tex]f(\frac{1}{2} ) = 0[/tex]

f(x) has a minimum value is zero at  [tex]x = \frac{1}{2}[/tex]