Answer:
Step-by-step explanation:
[tex]\left[\begin{array}{ccc}\vec i&\vec j&\vec k \\\frac{\partial}{\partial x} &\frac{\partial}{\partial y} &\frac{\partial}{\partial z } \\x+y^2&y+z^2&z+x^2\end{array}\right] = 2z\vec i -2x\vec j + 2y \vec z[/tex]
Since the plane is oriented counterclockwise. The equation of the plane is
[tex]x+y+z=5[/tex]
Now, let's use Stokes' theorem and get the surface integral set up
[tex]\int\limits_C {\vec F\bullet d\vec r} =\iint_S{curl \vec F\bullet d\vec S}[/tex]
[tex]=\iint_S {(2z\vec i-2x\vec j+2y\vec z)\bullet d\vec S}[/tex]
You finish the work.