Sports Drink Consumption The average number of gallons of sports drinks consumed by the football team during a game is 20, with a standard deviation of 3 gallons. Assume the variable is normally distributed. When a game is played, find the probability of using

Respuesta :

Answer:

a) [tex] P(0<z<1.67)= P(z<1.67) -P(Z<0) = 0.953 -0.5=0.453[/tex]

b) [tex] P(Z<-0.33) = 0.371[/tex]

c) [tex] P(Z>0.33) =1-P(Z<0.33) = 1-0.629= 0.371[/tex]

d) [tex] P(2<z<2.67)= P(z<2.67) -P(Z<2) = 0.996 -0.977=0.019[/tex]

Step-by-step explanation:

Assuming the following questions:

a. Between 20 and 25 gallons

Let X the random variable that represent the sports drink consumption of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(20,3)[/tex]  

Where [tex]\mu=20[/tex] and [tex]\sigma=3[/tex]

We are interested on this probability

[tex]P(20<X<25)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

And if we find the z score for each limit we got:

[tex] z = \frac{20-20}{3}=0[/tex]

[tex] z = \frac{25-20}{3}=1.67[/tex]

And we can use the normal standard distirbution table and we got:

[tex] P(0<z<1.67)= P(z<1.67) -P(Z<0) = 0.953 -0.5=0.453[/tex]

b. Less than 19 gallons

[tex] z = \frac{19-20}{3}=-0.33[/tex]

And using the normal table we got:

[tex] P(Z<-0.33) = 0.371[/tex]

c. More than 21 gallons

[tex] z = \frac{21-20}{3}=0.33[/tex]

And using the normal table and the complement rule we got:

[tex] P(Z>0.33) =1-P(Z<0.33) = 1-0.629= 0.371[/tex]

d. Between 26 and 28 gallons

[tex] z = \frac{26-20}{3}=2[/tex]

[tex] z = \frac{28-20}{3}=2.67/tex]

And we can use the normal standard distirbution table and we got:

[tex] P(2<z<2.67)= P(z<2.67) -P(Z<2) = 0.996 -0.977=0.019[/tex]