Respuesta :
Answer:
[tex](A)m\angle 2=125^\circ\\(C)m\angle 8=55^\circ\\(E)m\angle 14=100^\circ[/tex]
Step-by-step explanation:
The diagram of the problem is drawn and attached.
Given that:
[tex]m\angle 9 =80^\circ\\m\angle 5 =55^\circ[/tex]
[tex]m\angle 5+ m\angle 6=180^\circ\\55^\circ+ m\angle 6=180^\circ\\m\angle 6=180^\circ-55^\circ\\m\angle 6=125^\circ\\$Now:\\m\angle 6 = m\angle 2 $(Corresponging angles)\\Therefore m\angle 2=125^\circ\\[/tex]
[tex]m\angle 5= m\angle 8=55^\circ $(Vertically Opposite Angles)[/tex]
Also
[tex]m\angle 9+ m\angle 10=180^\circ\\80^\circ+ m\angle 10=180^\circ\\m\angle 10=180^\circ-80^\circ\\m\angle 10=100^\circ\\$Now:\\m\angle 10 = m\angle 14 $(Corresponging angles)\\Therefore m\angle 14=100^\circ\\[/tex]

The angle measures that are correct are m<2 = 125degrees, m<8 = 55 degrees and m<14 = 100 degrees
Given the following angles from the diagram;
- m<5 = 55 degrees
- m<9 = 80degrees
From the diagram
- m<5 = m<1 = 55 degrees (corresponding angle)
- m<1 + m<2 = 180 (sum of angle on a straight line)
Hence;
55 + m<2 = 180
m<2 = 180 - 55
m<2 = 125degrees
Also;
- m<5 = m<8 = 55 degrees (vertically opposite angle)
- m<9 = m<13 = 80degrees
- m<13 + m<14 = 180
Hence;
80 + m<14 = 180
m<14 = 180 - 80
m<14 = 100 degrees
Hence the angle measures that are correct are m<2 = 125degrees, m<8 = 55 degrees and m<14 = 100 degrees
Learn more here: https://brainly.com/question/19670823