Answer:
[tex] \frac{1}{12 {c}^{ \frac{7}{18} } } [/tex]
Step-by-step explanation:
[tex]3 \sqrt{c} \astb \sqrt{c} \ast \: 4 \sqrt{c} = {c}^{ \frac{11}{12} }
\\ \\
3.b.4 \sqrt{c \times c \times c} = {c}^{ \frac{11}{12} } \\ \\
12b \sqrt{ {c}^{3} } = {c}^{ \frac{11}{12} } \\ \\
12b \times {c}^{3 \times \frac{1}{2} } = {c}^{ \frac{11}{12} } \\ \\
12b \times {c}^{\frac{3}{2} } = {c}^{ \frac{11}{12} } \\ \\
b = \frac{{c}^{ \frac{11}{12} }}{12{c}^{ \frac{3}{2} }} \\ \\
b = \frac {c^{\frac{11}{12}-\frac{3}{2}}}{12}\\\\
b = \frac{{c}^{ \frac{11 - 18}{12} }}{12}} \\ \\
b = \frac{{c}^{ \frac{ - 7}{12} }}{12} \\ \\
b = \frac{1}{12 {c}^{ \frac{7}{18} } } [/tex]