Complete the recursive formula of the geometric sequence -1.5\,,\,6\,,-24\,,\,96,...−1.5,6,−24,96,...minus, 1, point, 5, comma, 6, comma, minus, 24, comma, 96, comma, point, point, point.

d(1)=d(1)=d, left parenthesis, 1, right parenthesis, equals


d(n)=d(n-1)\cdotd(n)=d(n−1)⋅d, left parenthesis, n, right parenthesis, equals, d, left parenthesis, n, minus, 1, right parenthesis, dot

Respuesta :

Answer:

[tex]d(1)=-1.5[/tex]  and recursive formula is [tex]d(n)=d(n-1)\cdot (-4)[/tex].

Step-by-step explanation:

The given geometric sequence is

[tex]-1.5, 6, -24, 96,...[/tex]

Here, the first term is -1.5. So

[tex]d(1)=-1.5[/tex]

Second term is 6. So,

[tex]d(2)=6[/tex]

In the given geometric sequence, the common ratio is

[tex]r=\dfrac{d(2)}{d(1)}=\dfrac{6}{-1.5}=4[/tex]

The recursive formula of the geometric sequence is

[tex]d(n)=d(n-1)\cdot r[/tex]

where r is common ratio.

[tex]d(n)=d(n-1)\cdot (-4)[/tex]

Therefore, the recursive formula is [tex]d(n)=d(n-1)\cdot (-4)[/tex].

Answer:

N=13 or just 13

Step-by-step explanation: I got it off of khan