Determine the intercepts of the line. 4x-1=3y+54x−1=3y+54, x, minus, 1, equals, 3, y, plus, 5 xxx-intercept: \Big((left parenthesis ,,comma \Big))right parenthesis yyy-intercept: \Big((left parenthesis ,,comma \Big))

Respuesta :

Answer:

The intercepts [tex](x,y) = (\frac{3}{2},-2)[/tex]

Step-by-step explanation:

Given:

[tex]4x-1=3y+5[/tex]

Required

Determine the intercepts

The equation is a linear equation and the intercepts of the equation is calculated as thus;

For x intercepts; substitute 0 for y

[tex]4x-1=3y+5[/tex]

[tex]4x-1=3(0)+5[/tex]

[tex]4x-1=0 + 5[/tex]

[tex]4x-1=5[/tex]

Add 1 to both sides

[tex]4x-1 + 1=5 + 1[/tex]

[tex]4x = 6[/tex]

Divide both sides by 4

[tex]\frac{4x}{4} = \frac{6}{4}[/tex]

[tex]x = \frac{6}{4}[/tex]

Simplify fraction to lowest term

[tex]x = \frac{3}{2}[/tex]

For y intercept, substitute 0 for x

[tex]4x-1=3y+5[/tex]

[tex]4(0)-1=3y+5[/tex]

[tex]0 - 1 = 3y + 5[/tex]

[tex]-1 = 3y + 5[/tex]

Subtract 5 from both sides

[tex]-5 - 1 = 3y + 5 - 5[/tex]

[tex]-6 = 3y[/tex]

Divide both sides by 3

[tex]\frac{-6}{3} = \frac{3y}{3}[/tex]

[tex]-2 = y[/tex]

Reorder

[tex]y = -2[/tex]

Hence, the intercepts [tex](x,y) = (\frac{3}{2},-2)[/tex]

Answer:

0,-2

Step-by-step explanation: