Z^5=-243i, find the solution to the equation whose argument is strictly between 180 degrees and 270 degrees. Round your answer to the nearest 10th

Z5243i find the solution to the equation whose argument is strictly between 180 degrees and 270 degrees Round your answer to the nearest 10th class=

Respuesta :

Answer:

The solution is [tex]z = -2.853 - i 0.927[/tex].

Step-by-step explanation:

Complex power is determined by means of the De Moivre's Theorem, whose expression is:

[tex]z^{n} = r^{n} \cdot (\cos n\theta + i \sin n\theta)[/tex]

Where [tex]r[/tex] is the norm of the complex number. In this case, expression can be written as:

[tex]-i 243 = 3^{5} \cdot (\cos 5\theta + i \sin 5\theta)[/tex]

The real component must be equal to zero and complex component must be equal to -1. That is to say:

[tex]\cos 5\theta = 0[/tex]

[tex]\sin 5\theta = -1[/tex]

Possible solutions for each component are, respectively:

Real component

[tex]5\theta = \cos^{-1}0[/tex]

[tex]5\theta = \frac{\pi}{2} \pm \pi\cdot j[/tex], [tex]\forall j \in \mathbb{N}_{O}[/tex]

[tex]\theta = \frac{\pi}{10} \pm \frac{\pi}{5} \cdot j[/tex], [tex]\forall j \in \mathbb{N}_{O}[/tex]

Possible solutions: [tex]\frac{11\pi}{10}[/tex], [tex]\frac{13\pi}{10}[/tex], [tex]\frac{3\pi}{2}[/tex]

Complex component

[tex]5\theta = \sin^{-1}(-1)[/tex]

[tex]5\theta = \frac{3\pi}{2} \pm 2\pi \cdot j[/tex], [tex]\forall j \in \mathbb{N}_{O}[/tex]

[tex]\theta = \frac{3\pi}{10} \pm \frac{2\pi}{5} \cdot j[/tex], [tex]\forall j \in \mathbb{N}_{O}[/tex]

Possible solutions: [tex]\frac{11\pi}{10}[/tex], [tex]\frac{3\pi}{2}[/tex]

There is one solution whose argument is strictly between 180 degrees ([tex]\pi[/tex]) and 270 degrees ([tex]1.5\pi[/tex]).

[tex]z = 3 \cdot \left( \cos \frac{11\pi}{10} + i \sin \frac{11\pi}{10} \right)[/tex]

[tex]z = -2.853 - i 0.927[/tex]