Marina correctly simplified the expression Start Fraction negative 4 a Superscript negative 2 Baseline b Superscript 4 Baseline Over 8 a Superscript negative 6 Baseline b Superscript negative 3 Baseline End Fraction, assuming that a not-equals 0, b not-equals 0. Her simplified expression is below. Negative one-half a Superscript 4 Baseline b Superscript empty box What exponent should Marina use for b? mc027-4.j pg m c 0 27-5. j p g 1 7

Respuesta :

Answer: Marina should have applied the power of a power rule and multiplied the exponents instead of adding them. The simplified form should be j to the 16th power.

Step-by-step explanation:

The required value of exponent should Marian used to be is 7.

Given that,

Marina has the expression [tex]= \frac{-4a^{-2} b^{4} }{8a^{-6} b^{-3} }[/tex]

Where a ≠0, b≠0

The new expression = [tex]\frac{-1a^{4}(b)^{x} }{2}[/tex]

Assuming the exponent of b = x

We have to determine,

The exponent should marina is used to be.

According to the question,

To find the value of exponent of b is x. The calculation must be done in single unit.

Then, The value of exponent value of b .

[tex]= \frac{-4a^{-2} b^{4} }{8a^{-6} b^{-3} }\\\\ = \frac{-4a^{-2} a^{6} b^{4} b^{3} }{8 }\\\\ = \frac{-1 a^{(-2+6)} b^{(3+4)} }{2}\\\\ = \frac{-1 a^{4} b^{7} }{2} \\\\b = 7[/tex]

Hence, The required value of exponent of b is 7.

For more information about Exponent click the link given below.

https://brainly.com/question/16012916