Respuesta :

Answer:

(a) r = 9 mm

(b) r = 1.5 cm

(c) r = 4.5 ft

Step-by-step explanation:

Volume of a sphere is given as;

[tex]V = \frac{4}{3} \pi r^3[/tex]

where;

V is the volume of the sphere

r is radius of the sphere

Make r the subject of the formula;

[tex]V = \frac{4}{3} \pi r^3\\\\3V = 4\pi r^3\\\\\frac{3V}{4 \pi} = r^3\\\\r = \sqrt[3]{\frac{3V}{4 \pi}}[/tex]

(a) Volume, V = 972π mm³

[tex]r = \sqrt[3]{\frac{3V}{4 \pi}} \\\\r = \sqrt[3]{\frac{3*972 \pi}{4 \pi}}\\\\r = \sqrt[3]{729} \\\\r = 9 \ mm[/tex]

(b) Volume, V = 4.5π cm³

[tex]r = \sqrt[3]{\frac{3V}{4 \pi}} \\\\r = \sqrt[3]{\frac{3*4.5 \pi}{4 \pi}}\\\\r = \sqrt[3]{3.375} \\\\r = 1.5 \ cm[/tex]

(c) Volume, V = 121.5π ft³

[tex]r = \sqrt[3]{\frac{3V}{4 \pi}} \\\\r = \sqrt[3]{\frac{3*121.5 \pi}{4 \pi}}\\\\r = \sqrt[3]{91.125} \\\\r = 4.5 \ ft[/tex]