Find the radius round your answer to the nearest tenth

Answer:
r = 3m
Step-by-step explanation:
Formula for the volume of a sphere: V = [tex]\frac{4}{3}[/tex][tex]\pi[/tex][tex]r^{3}[/tex]
We want to find the radius so we use algebra to rearrange the equation to make the radius (r) the subject of the equation
Divide both sides by [tex]\frac{4}{3}[/tex]
[tex]\frac{3V}{4}[/tex] = [tex]\pi[/tex][tex]r^{3}[/tex]
Divide both sides by [tex]\pi[/tex]
[tex]\frac{3V}{4\pi }[/tex] = [tex]r^{3}[/tex]
Take the cube root of both sides
[tex]\sqrt[3]{\frac{3V}{4\pi } }[/tex]= r
Substitute V = 36[tex]\pi[/tex] into the equation
r = [tex]\sqrt[3]{\frac{3(36\pi) }{4\pi } }[/tex]
Expand the bracket
r = [tex]\sqrt[3]{\frac{108\pi }{4\pi } }[/tex]
Divide 108[tex]\pi[/tex] by 4[tex]\pi[/tex] (For this, the two [tex]\pi[/tex] in the numerator and denominator cancel each other out, and you only need to divide 108/4)
r = [tex]\sqrt[3]{27}[/tex]
The cube root of 27 is 3, because [tex]3^{3}[/tex] = 3 x 3 x 3 = 27
r = 3