Respuesta :

Answer:

r = 3m

Step-by-step explanation:

Formula for the volume of a sphere: V = [tex]\frac{4}{3}[/tex][tex]\pi[/tex][tex]r^{3}[/tex]

We want to find the radius so we use algebra to rearrange the equation to make the radius (r) the subject of the equation

Divide both sides by [tex]\frac{4}{3}[/tex]

[tex]\frac{3V}{4}[/tex] = [tex]\pi[/tex][tex]r^{3}[/tex]

Divide both sides by [tex]\pi[/tex]

[tex]\frac{3V}{4\pi }[/tex] = [tex]r^{3}[/tex]

Take the cube root of both sides

[tex]\sqrt[3]{\frac{3V}{4\pi } }[/tex]= r

Substitute V = 36[tex]\pi[/tex] into the equation

r = [tex]\sqrt[3]{\frac{3(36\pi) }{4\pi } }[/tex]

Expand the bracket

r = [tex]\sqrt[3]{\frac{108\pi }{4\pi } }[/tex]

Divide 108[tex]\pi[/tex] by 4[tex]\pi[/tex] (For this, the two [tex]\pi[/tex] in the numerator and denominator cancel each other out, and you only need to divide 108/4)

r = [tex]\sqrt[3]{27}[/tex]

The cube root of 27 is 3, because [tex]3^{3}[/tex] = 3 x 3 x 3 = 27

r = 3