Respuesta :

Answer:

The minimum diameter to withstand such tensile strength is 22.568 mm.

Explanation:

The allow is experimenting an axial load, so that stress formula for cylidrical sample is:

[tex]\sigma = \frac{P}{A_{c}}[/tex]

[tex]\sigma = \frac{4\cdot P}{\pi \cdot D^{2}}[/tex]

Where:

[tex]\sigma[/tex] - Normal stress, measured in kilopascals.

[tex]P[/tex] - Axial load, measured in kilonewtons.

[tex]A_{c}[/tex] - Cross section area, measured in square meters.

[tex]D[/tex] - Diameter, measured in meters.

Given that [tex]\sigma = 75\times 10^{3}\,kPa[/tex] and [tex]P = 30\,kN[/tex], diameter is now cleared and computed at last:

[tex]D^{2} = \frac{4\cdot P}{\pi \cdot \sigma}[/tex]

[tex]D = 2\sqrt{\frac{P}{\pi \cdot \sigma} }[/tex]

[tex]D = 2 \sqrt{\frac{30\,kN}{\pi \cdot (75\times 10^{3}\,kPa)} }[/tex]

[tex]D = 0.0225\,m[/tex]

[tex]D = 22.568\,mm[/tex]

The minimum diameter to withstand such tensile strength is 22.568 mm.