Respuesta :

Answer:

[tex]cos(x)=-\frac{\sqrt{3} }{2}[/tex]

[tex]sin(x)=\frac{1}{2}[/tex]

[tex]tan(x)=-\frac{1}{\sqrt{3} }[/tex]

[tex]csc(x)=2[/tex]

[tex]sec(x)=-\frac{2}{\sqrt{3}}[/tex]

[tex]cot(x)=-\sqrt{3}[/tex]

Step-by-step explanation:

(I'll just use x for ease of writing)

We have the trig equation [tex]cos(x)=-\frac{\sqrt{3} }{2}[/tex], and we know that its terminal side is in the 2nd quadrant. By using a unit circle, we can determine that the angle is [tex]\frac{5\pi}{6}[/tex] which has an ordered pair of [tex](-\frac{\sqrt{3} }{2},\frac{1}{2} )[/tex]

[tex]sin(x)=y[/tex], so [tex]sin(x)=\frac{1}{2}[/tex]

[tex]tan(x)=\frac{y}{x}[/tex], so [tex]tan(x)=\frac{\frac{1}{2} }{-\frac{\sqrt{3} }{2} }=-\frac{1}{\sqrt{3} }[/tex]

Now that we have sin, cos, and tan, we can just take the reciprocal of each of these to get our answers for csc, sec, and cot.

[tex]csc(x)=\frac{1}{sin(x)}[/tex], so [tex]csc(x)=2[/tex]

[tex]sec(x)=\frac{1}{cos(x)}[/tex], so [tex]sec(x)=-\frac{2}{\sqrt{3}}[/tex]

[tex]cot(x)=\frac{1}{tan(x)}[/tex], so [tex]cot(x)=-\sqrt{3}[/tex]

Step-by-step explanation: