Answer:
94 more students should be included in the sample.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1-0.99}{2} = 0.005[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].
So it is z with a pvalue of [tex]1-0.005 = 0.995[/tex], so [tex]z = 2.575[/tex]
Now, find the margin of error M as such
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
How many students we need to sample to be 99% sure that the sample mean x is within 1 semester hour of the population mean?
We need to survey n students.
n is found when M = 1.
We have that [tex]\sigma = 4.7[/tex]
So
[tex]M = z*\frac{\sigma}{\sqrt{n}}[/tex]
[tex]1 = 2.575*\frac{4.7}{\sqrt{n}}[/tex]
[tex]\sqrt{n} = 2.575*4.7[/tex]
[tex](\sqrt{n})^{2} = (2.575*4.7)^{2}[/tex]
[tex]n = 146.47[/tex]
Rounding up
147 students need to be surveyed.
How many more students should be included...?
53 have already been surveyed
147 - 53 = 94
94 more students should be included in the sample.