Answer:
The average emf induce is [tex]V = 2.625 * 10^{-5} \ V[/tex]
Explanation:
From the question we are told that
The radius of the coil is [tex]r = 0.30 \ m[/tex]
The number of turns is [tex]N = 420 \ turns[/tex]
The frequency of the transition radio wave is [tex]f = 1.3\ MHz = 1.3 *10^{6} Hz[/tex]
The magnetic field is [tex]B_,{max} = 1.7 * 10^{-13} \ T[/tex]
The time taken for the magnetic field to go from zero to maximum is [tex]\Delta T = \frac{T}{4}[/tex]
The period of the transmitted radio wave is [tex]T = \frac{1}{f}[/tex]
So
[tex]\Delta T = \frac{T}{4} = \frac{1}{4 f}[/tex]
The potential difference can be mathematically represented as
[tex]V = NA (\frac{\Delta B}{\Delta T} )[/tex]
[tex]V = NA ([B_{max} - B_{min} ] * 4f)[/tex]
Where [tex]B_{min} = 0T[/tex]
substituting values
[tex]V = 420 * (\pi *(0.30)^2) * (1.7 *10^{-13} * 4 * 1.3 *10^{6})[/tex]
[tex]V = 2.625 * 10^{-5} \ V[/tex]