Respuesta :
Answer:
The approximate solution to the system is [tex](-2.7, 2.1)[/tex].
Step-by-step explanation:
To solve the system of equations [tex]\begin{bmatrix}y=0.5x+3.5\\ y=-\frac{2}{3}x+\frac{1}{3}\end{bmatrix}[/tex] you must:
[tex]\mathrm{Rationalize\:equations}\\\\\begin{bmatrix}y=\left(\frac{1}{2}\right)x+\left(\frac{7}{2}\right)\\ y=-\frac{2}{3}x+\frac{1}{3}\end{bmatrix}[/tex]
[tex]\mathrm{Subsititute\:}y=-\frac{2}{3}x+\frac{1}{3}\\\\\begin{bmatrix}-\frac{2}{3}x+\frac{1}{3}=\frac{1}{2}x+\frac{7}{2}\end{bmatrix}[/tex]
[tex]\mathrm{Isolate}\:x\:\mathrm{for}\:-\frac{2}{3}x+\frac{1}{3}=\frac{1}{2}x+\frac{7}{2}\\\\-\frac{2}{3}x=\frac{19}{6}+\frac{1}{2}x\\\\-\frac{7}{6}x=\frac{19}{6}\\\\6\left(-\frac{7}{6}x\right)=\frac{19\cdot \:6}{6}\\\\-7x=19\\\\x=-\frac{19}{7}\approx-2.7[/tex]
[tex]\mathrm{For\:}y=-\frac{2}{3}x+\frac{1}{3}\\\\\mathrm{Subsititute\:}x=-\frac{19}{7}\\\\y=-\frac{2}{3}\left(-\frac{19}{7}\right)+\frac{1}{3}\\\\y=\frac{15}{7}\approx 2.1[/tex]
The approximate solutions to the system of equations are:
[tex]x=-2.7 ,\:y=2.1[/tex]
Answer:
(–2.7, 2.1)
Step-by-step explanation:
edg. 2020 unit test