Respuesta :

Answer:

  BC = 20.225

Step-by-step explanation:

Call the point on CD where the triangle vertex is point X.

Then we have ...

  BC·tan(20°) = CX

  DE·tan(25°) = DX

  CX +DX = AB

  AB·tan(20°) = AE

  AE +DE = BC

Now we can write BC in terms of itself:

  BC = AE +DE = AB·tan(20°) +DE

  BC = (CX +DX)·tan(20°) +DE = (BC·tan(20°) +DE·tan(25°))·tan(20°) +DE

  BC(1 -tan(20°)²) = DE(1 +tan(25°)·tan(20°))

  BC = DE(1 +tan(25°)·tan(20°))/(1 -tan(20°)²) . . . . where DE = 15 cm

  BC ≈ 20.225 cm