Respuesta :

Answer:

[tex]B=51[/tex]°

Step-by-step explanation:

Use the Law of Sines as follows:

[tex]\frac{sinC}{c} =\frac{sinB}{b}[/tex]

Insert the appropriate values:

[tex]\frac{sin100}{14} =\frac{sinB}{11}[/tex]

Isolate B. Multiply both sides by 11:

[tex]11*(\frac{sin100}{14} )=11*(\frac{sinB}{11})\\\\\frac{11*sin100}{14} =sinB\\\\sinB=\frac{11*sin100}{14}[/tex]

Use the inverse:

[tex]B=sin^{-1}(\frac{11*sin100}{14})[/tex]

Insert the equation into a calculator and round to the nearest degree:

[tex]B=50.7\\\\B=51[/tex]

Angle B is 51°.

:Done