Respuesta :

Answer:

[tex]AC=13.5[/tex]

Step-by-step explanation:

Use the Law of Sines as follows:

[tex]\frac{sinA}{a} =\frac{sinB}{b}[/tex]

Insert the values (use the steps from the last problem):

[tex]\frac{sin25}{14} =\frac{sin24}{b}[/tex]

Isolate b. Multiply both sides by b:

[tex]b*(\frac{sin25}{14} )=b*(\frac{sin24}{b})\\\\b*\frac{sin25}{14}=sin24[/tex]

Multiply both sides by 14:

[tex]14*(b*\frac{sin25}{14})=14*(sin24)\\\\b*sin25=14*sin24[/tex]

Isolate b. Divide both sides by sin 25:

[tex]\frac{b*sin25}{sin25} =\frac{14*sin24}{ysin25} \\\\b=\frac{14*sin24}{sin25}[/tex]

Insert the equation into a calculator and round to the nearest tenth:

[tex]b=13.5[/tex]

The length of AC is 13.5 units.

:Done

Otras preguntas