Respuesta :

763812

Answer:

10

Step-by-step explanation:

31°/5 = 108°/AC

31°·AC = 108°·5

0.5·AC = 1·5

AC = 5/0.5

AC = 10

Answer:

[tex]AC=9.2[/tex]

Step-by-step explanation:

The Law of Sines states:

[tex]\frac{sinA}{a} =\frac{sinB}{b} =\frac{sinC}{c}[/tex]

The lower case letters represent the sides opposite the angles: ∠A - side a, ∠B- side b, ∠C- side c. It helps to make a model.

To Find AC, or side b, we can use A and B because we have the appropriate information to solve for b. Insert values:

[tex]\frac{sinA}{a}=\frac{sinB}{b} \\\\\frac{sin31}{5}=\frac{sin108}{b}[/tex]

Solve for b. Multiply both sides by b:

[tex]b*(\frac{sin31}{5})=b*(\frac{sin108}{b})\\\\b*\frac{sin31}{5} =sin108[/tex]

Multiply both sides by 5:

[tex]5*(b*\frac{sin31}{5} )=5*(sin108)\\\\b*sin31=5*sin108[/tex]

Divide both sides by sin 31:

[tex]\frac{b*sin31}{sin31} =\frac{5*sin108}{sin31} \\\\b=\frac{5*sin108}{sin31}[/tex]

Enter the simplified equation into a calculator:

[tex]b=9.2[/tex]

The length of AC is 9.2 units.

:Done