Given the formula, Sn=a1−r^n over 1−r, what is the sum of the first nine terms of the geometric series: 324, -108, 36, -12...

If necessary, round to the hundredths place. (2 places after the decimal)

Respuesta :

Answer:

≈ 486.02

Step-by-step explanation:

The sum to n terms of a geometric series is

[tex]S_{n}[/tex] = [tex]\frac{a(1-r^{n}) }{1-r}[/tex]

where a is the first term and r the common ratio

Here a = 324 and r = [tex]\frac{-108}{324}[/tex] = - [tex]\frac{1}{3}[/tex], thus

[tex]S_{9}[/tex] = [tex]\frac{324(1-(-1/3)^9)}{1-\frac{1}{3} }[/tex]

   = [tex]\frac{324(1+\frac{1}{19683}) }{\frac{2}{3} }[/tex]

   = 486([tex]\frac{19684}{19683}[/tex] ) ≈ 486.02 ( to the nearest hundredth )