Respuesta :
Answer:
[tex]x=0\\y=-3[/tex]
Step-by-step explanation:
[tex]-5x+y=-3\\3x-8y=24[/tex]
Let's solve the first equation for y to later on replace it in the second.
[tex]y=-3+5x[/tex]
Now plug this in the second equation.
[tex]3x-8y=24\\3x-8(-3+5x)=24\\[/tex]
Distribute -8
[tex]3x+24-40x=24\\[/tex]
Subtract 24
[tex]3x-40x=24-24[/tex]
Combine like terms;
[tex]-37x=0[/tex]
Divide by -37
[tex]x=\frac{0}{-37}\\ x=0[/tex]
Now replace x in any of the equations to find y.
[tex]-5x+y=-3\\-5(0)+y=-3\\y=-3[/tex]
Answer:
x = 0,
y = -3
Step-by-step explanation:
Let us solve through elimination ~
1. Multiply top equation -5x + y = -3 by 8, adding that product to the bottom equation 3x - 8y = 24:
8 ( -5x + y = -3) ⇒ - 40x + 8y = -24
+ 3x - 8y = 24 + 3x - 8y = 24
2. To further express this algebraic process of adding to find x in this case:
- 40x + 8y = -24 ⇒ - 37x = 0 ⇒ x = 0
+ 3x - 8y = 24
3. Now let us substitute this value of x into the top equation -5x + y = -3:
- 5 ( 0 ) + y = - 3
4. ...And solve for y:
- 5 ( 0 ) + y = - 3 ⇒ 0 + y = -3 ⇒ y = -3