Respuesta :
Answer:
0.67 miles
Step-by-step explanation:
in the attached diagram, the drone is at B. The cafeteria is at A and the sport complex at C. We want to determine how high up the drone is, i.e. |BMM
Using Trigonometry:
In Right Triangle ABM
[tex]Tan 27^\circ=\frac{h}{y} \\h=yTan 27^\circ[/tex]
Similarly, in Right Triangle BMC
[tex]Tan 34^\circ=\frac{h}{2.3-y} \\h=(2.3-y)Tan 34^\circ[/tex]
Therefore:
[tex]h=yTan 27^\circ =(2.3-y)Tan 34^\circ\\yTan 27^\circ =(2.3-y)Tan 34^\circ\\yTan 27^\circ =2.3Tan 34^\circ-yTan 34^\circ\\yTan 27^\circ +yTan 34^\circ=2.3Tan 34^\circ\\y(Tan 27^\circ+Tan 34^\circ)=2.3Tan 34^\circ\\y=\dfrac{2.3Tan 34^\circ}{Tan 27^\circ+Tan 34^\circ} \\y=1.3102[/tex]
Since h=yTan 27^\circ
h=1.3102Tan 27^\circ
h=0.6676 miles
The height of the drone therefore is 0.67 miles (correct to 2 decimal places)

The question is an illustration of angles of depressions and elevations
The drone is 0.67 miles high
The angles of depression are given as:
[tex]\mathbf{\theta_1 = 27}[/tex]
[tex]\mathbf{\theta_2 = 34}[/tex]
The length of the road is given as:
[tex]\mathbf{l = 2.3\ miles}[/tex]
See attachment for the image of the scenario
Considering triangle ABM, we have the following tangent ratio
[tex]\mathbf{tan27 = \frac{h}{2.3 - x}}[/tex]
Make x the subject
[tex]\mathbf{x= 2.3 - \frac{h}{tan27 }}[/tex]
Considering triangle CBM, we have the following tangent ratio
[tex]\mathbf{tan34 = \frac{h}{ x}}[/tex]
Make x the subject
[tex]\mathbf{x= \frac{h}{tan34 }}[/tex]
Substitute [tex]\mathbf{x= 2.3 - \frac{h}{tan27 }}[/tex] in [tex]\mathbf{x= \frac{h}{tan34 }}[/tex]
[tex]\mathbf{2.3 - \frac{h}{tan27 }= \frac{h}{tan34 }}[/tex]
Evaluate tan 27 and tan 34
[tex]\mathbf{2.3 - \frac{h}{0.5095 }= \frac{h}{0.6745 }}[/tex]
Take reciprocals
[tex]\mathbf{2.3 - 1.9627h= 1.4826h }[/tex]
Collect like terms
[tex]\mathbf{1.4826h + 1.9627h= 2.3}[/tex]
[tex]\mathbf{3.4453h= 2.3}[/tex]
Divide
[tex]\mathbf{h= 0.6676}[/tex]
Approximate
[tex]\mathbf{h= 0.67}[/tex]
Hence, the drone is 0.67 miles high
Read more about angles of depression at:
https://brainly.com/question/13697260
