What is the volume of the cube shown?

Answer: [tex]11\frac{25}{64}in^3[/tex]
Step-by-step explanation:
[tex]V=a^3[/tex]
This is your mixed number. [tex]2\frac{1}{4}in[/tex]
Start by converting the mixed number to an improper fraction. To do this, you take the big number, multiply it by the denominator, add the numerator; and all of this over the same denominator.
[tex]\frac{2*4+1}{4}in=\frac{8+1}{4}in=\frac{9}{4}in[/tex]
Now plug this into the formula:
[tex]V=(\frac{9}{4}in)^3[/tex]
As you should remember;
[tex](\frac{x}{y})^n=\frac{x^n}{y^n}[/tex]
------------------------------------------------------------
[tex]V=\frac{9^3}{4^3}in^3[/tex]
Solve;
[tex]V=\frac{729}{64}in^3[/tex]
Now convert to mixed number by dividing.
729/64=11
64
------
8'9
64
-------
25
11 is the big number, 25 the numerator and 64 the denominator.
[tex]11\frac{25}{64}[/tex]