What is the following simplified product? Assume x greater-than-or-equal-to 0
(StartRoot 10 x Superscript 4 Baseline EndRoot minus x StarRoot 5 x squared EndRoot) (2 StartRoot 15 x Superscript 4 Baseline EndRoot + StartRoot 3 x cubed EndRoot)

Respuesta :

Answer:

  [tex]10x^4\sqrt{6}+x^3\sqrt{30x}-10x^4\sqrt{3}-x^3\sqrt{15x}[/tex]

Step-by-step explanation:

Remove perfect squares from under the radicals.

  [tex](\sqrt{10x^4}-x\sqrt{5x^2})(2\sqrt{15x^4}+\sqrt{3x^3})\\\\=(\sqrt{10x^4})(2\sqrt{15x^4}) +(\sqrt{10x^4})(\sqrt{3x^3}) -(x\sqrt{5x^2})(2\sqrt{15x^4}) -(x\sqrt{5x^2})(\sqrt{3x^3})\\\\=2\sqrt{150x^8}+\sqrt{30x^7}-2x\sqrt{75x^6}-x\sqrt{15x^5}\\\\=\boxed{10x^4\sqrt{6}+x^3\sqrt{30x}-10x^4\sqrt{3}-x^3\sqrt{15x}}[/tex]

_____

The applicable rules of exponents are ...

  (x^a)(x^b) = x^(a+b)

  √(a^2) = a . . . . . . . for a > 0

  (√a)(√b) = √(ab)

Answer:

See attached.

Step-by-step explanation:

Ver imagen grandmateeth