Respuesta :
Answer:
18,223 feet
Step-by-step explanation:
y= -16t^2 + 608t + 12,447.
y = -16(t² - 38t) + 12447
y = -16[t² - 2(t)(19) + 19² - 19²] + 12447
y = -16(t - 19)² - 16(-19²) + 12447
y = -16(t - 19)² + 18223
Vertex: (19, 18223)
Max height is 18,223 at t = 19
The parabolas are:
a = -16
b = 608
c = 12,447
x_v = -b/2a
t_v = -608/2(-16)
t_v = -608/-32
t_v = 19
Plug in t_v = 19 to find y_v
y = -16(19)^2 + 608(19) + 12,447
y = -16(361) + 11,552 + 12,477
y = -5,776 + 11,552 + 12,477
y = 18,253
We have the point (19, 18,253)
The max height is at 18,253 when t = 19
Best of Luck!