Respuesta :
Answer:
80% confidence interval for the true mean difference between the mean amount of mail-order purchases and the mean amount of internet purchases ([tex]\mu_1-\mu_2[/tex]) is [-9.132 , 23.332].
Step-by-step explanation:
We are given that a random sample of 7 sales receipts for mail-order sales results in a mean sale amount of $81.70 with a standard deviation of $18.75.
A random sample of 11 sales receipts for internet sales results in a mean sale amount of $74.60 with a standard deviation of $28.25.
Firstly, the Pivotal quantity for 80% confidence interval for the difference between population means is given by;
P.Q. = [tex]\frac{(\bar X_1-\bar X_2)-(\mu_1-\mu_2)}{s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] ~ [tex]t__n__1-_n__2-2[/tex]
where, [tex]\bar X_1[/tex] = sample mean sales receipts for mail-order sales = $81.70
[tex]\bar X_2[/tex] = sample mean sales receipts for internet sales = $74.60
[tex]s_1[/tex] = sample standard deviation for mail-order sales = $18.75
[tex]s_2[/tex] = sample standard deviation for internet sales = $28.25
[tex]n_1[/tex] = size of sales receipts for mail-order sales = 7
[tex]n_2[/tex] = size of sales receipts for internet sales = 11
Also, [tex]s_p=\sqrt{\frac{(n_1-1)s_1^{2} +(n_2-1)s_2^{2} }{n_1+n_2-2} }[/tex] = [tex]\sqrt{\frac{(7-1)\times 18.75^{2} +(11-1)\times 28.25^{2} }{7+11-2} }[/tex] = 25.11
Here for constructing 80% confidence interval we have used Two-sample t test statistics as we don't know about population standard deviations.
So, 80% confidence interval for the difference between population means, ([tex]\mu_1-\mu_2[/tex]) is ;
P(-1.337 < [tex]t_1_6[/tex] < 1.337) = 0.80 {As the critical value of t at 16 degree
of freedom are -1.337 & 1.337 with P = 10%}
P(-1.337 < [tex]\frac{(\bar X_1-\bar X_2)-(\mu_1-\mu_2)}{s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] < 1.337) = 0.80
P( [tex]-1.337 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] < [tex]{(\bar X_1-\bar X_2)-(\mu_1-\mu_2)}[/tex] < [tex]1.337 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] ) = 0.80
P( [tex](\bar X_1-\bar X_2)-1.337 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] < ([tex]\mu_1-\mu_2[/tex]) < [tex](\bar X_1-\bar X_2)+1.337 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] ) = 0.80
80% confidence interval for ([tex]\mu_1-\mu_2[/tex]) =
[ [tex](\bar X_1-\bar X_2)-1.337 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] , [tex](\bar X_1-\bar X_2)+1.337 \times {s_p\sqrt{\frac{1}{n_1} +\frac{1}{n_2} } }[/tex] ]
= [ [tex](81.70-74.60)-1.337 \times {25.11 \times \sqrt{\frac{1}{7} +\frac{1}{11} } }[/tex] , [tex](81.70-74.60)+1.337 \times {25.11 \times \sqrt{\frac{1}{7} +\frac{1}{11} } }[/tex] ]
= [-9.132 , 23.332]
Therefore, 80% confidence interval for the true mean difference between the mean amount of mail-order purchases and the mean amount of internet purchases ([tex]\mu_1-\mu_2[/tex]) is [-9.132 , 23.332].