Respuesta :

Answer:

The volume of the sphere is 20 m

Step-by-step explanation:

Given

Solid Shapes: Cylinder and Sphere

Volume of the cylinder [tex]= 30m^3[/tex]

Required

Volume of the sphere

First, we need to calculate the radius of the cylinder

The formula goes thus

[tex]V = \pi r^2h[/tex]

By substituting 30 for V, we have

[tex]30 = \pi r^2h[/tex]

Divide through by h

[tex]\frac{30}{h} = \frac{\pi r^2h}{h}[/tex]

[tex]\frac{30}{h} = \pi r^2[/tex]

Calculating the volume of the sphere

The formula goes thus

[tex]V = \frac{4}{3}\pi r^3[/tex]

Expand Expression

[tex]V = \frac{4}{3} * \pi r^2 * r[/tex]

Substitute [tex]\frac{30}{h} = \pi r^2[/tex]

[tex]V = \frac{4}{3} * \frac{30}{h} * r[/tex]

Simplify Expression

[tex]V = \frac{4}{1} * \frac{10}{h} * r[/tex]

[tex]V = \frac{40}{h} * r[/tex]

Given that the height of the cylinder and the sphere are equal

This means that the height of the cylinder equals the diameter of the sphere.

Mathematically; This is represented by

h = D

Where D represents diameter of the sphere

Recall that D = 2r (2 * radius)

Substitute 2r for D

h = 2r

Substitute h = 2r in [tex]V = \frac{40}{h} * r[/tex]; This gives

[tex]V = \frac{40}{2r} * r[/tex]

[tex]V = \frac{40r}{2r}[/tex]

[tex]V = 20[/tex]

Hence, the volume of the sphere is 20 m