Answer:
6 m/s
Explanation:
Given that :
mass of the block m = 200.0 g = 200 × 10⁻³ kg
the horizontal spring constant k = 4500.0 N/m
position of the block (distance x) = 4.00 cm = 0.04 m
To determine the speed the block will be traveling when it leaves the spring; we applying the work done on the spring as it is stretched (or compressed) with the kinetic energy.
i.e [tex]\frac{1}{2} kx^2 = \frac{1}{2} mv^2[/tex]
[tex]kx^2 = mv^2[/tex]
[tex]4500* 0.04^2 = 200*10^{-3} *v^2[/tex]
[tex]7.2 =200*10^{-3}*v^{2}[/tex]
[tex]v^{2} =\frac{7.2}{200*10^{-3}}[/tex]
[tex]v =\sqrt{\frac{7.2}{200*10^{-3}}}[/tex]
v = 6 m/s
Hence,the speed the block will be traveling when it leaves the spring is 6 m/s