sirbu02
contestada

The diagram shows a hexagon.
The hexagon has one line
of symmetry
А
B.
FA = BC
EF = CD
Angle ABC = 123
Angle BCD = 2 x angle CDE
Work out the size of angle AFE.
You must show some of your working.
Your final line must say, AFE = ...

Respuesta :

Answer:

158 degrees

Step-by-step explanation:

Step 1:

Let Angle CDE =y

Since Angle BCD = 2 X angle CDE

Angle BCD = 2y

Step 2

Consider Figure 2 attached, each of the figure forms an isosceles trapezoid ABCF and DEFC.

By these properties of Isosceles Trapezoids

  • Lower Base Angles are Congruent
  • Upper base angles are congruent
  • Any lower base angle is supplementary to any upper base angle

Therefore:

[tex]\angle ABC+\angle BCF=180^\circ\\\angle FCD+\angle CDE=180^\circ\\Therefore:\\\angle ABC+\angle BCF+\angle FCD+\angle CDE=360^\circ\\$But \angle BCF+\angle FCD=\angle BCD\\So:\\\angle ABC+\angle BCD+\angle CDE=360^\circ[/tex]

123+2y+y=360

3y=360-123

3y=237

y=79 degrees

Therefore:

[tex]\angle BCD=2 X 79^\circ=158^\circ\\\angle BCD=\angle AFE=158^\circ\\\angle AFE=158^\circ[/tex]

Ver imagen Newton9022
Ver imagen Newton9022