Answer:
158 degrees
Step-by-step explanation:
Step 1:
Let Angle CDE =y
Since Angle BCD = 2 X angle CDE
Angle BCD = 2y
Step 2
Consider Figure 2 attached, each of the figure forms an isosceles trapezoid ABCF and DEFC.
By these properties of Isosceles Trapezoids
Therefore:
[tex]\angle ABC+\angle BCF=180^\circ\\\angle FCD+\angle CDE=180^\circ\\Therefore:\\\angle ABC+\angle BCF+\angle FCD+\angle CDE=360^\circ\\$But \angle BCF+\angle FCD=\angle BCD\\So:\\\angle ABC+\angle BCD+\angle CDE=360^\circ[/tex]
123+2y+y=360
3y=360-123
3y=237
y=79 degrees
Therefore:
[tex]\angle BCD=2 X 79^\circ=158^\circ\\\angle BCD=\angle AFE=158^\circ\\\angle AFE=158^\circ[/tex]