It’s delta math for it

Answer:
[tex]\sqrt{x^{2}-7[/tex]
Step-by-step explanation:
Negative exponents flip the fraction, fraction exponents imply a radical to the denominator's degree, so flip the fraction and take the square root of what is in parentheses
We know that :
[tex]\bigstar \ \ \boxed{\mathsf{a^{-1} = \dfrac{1}{a}}}[/tex]
[tex]\mathsf{Given \ question \ is : \dfrac{1}{(x^2 - 7)^{\frac{-1}{2}}}}[/tex]
Using the above formula, we can write it as :
[tex]\implies \mathsf{\dfrac{1}{\dfrac{1}{(x^2 - 7)^{\frac{1}{2}}}}}[/tex]
[tex]\implies \mathsf{(x^2 - 7)^{\frac{1}{2}}}[/tex]
[tex]\implies \mathsf{\sqrt{x^2 - 7}}[/tex]