Respuesta :

Answer:

[tex]\sqrt{x^{2}-7[/tex]

Step-by-step explanation:

Negative exponents flip the fraction, fraction exponents imply a radical to the denominator's degree, so flip the fraction and take the square root of what is in parentheses

We know that :

[tex]\bigstar \ \ \boxed{\mathsf{a^{-1} = \dfrac{1}{a}}}[/tex]

[tex]\mathsf{Given \ question \ is : \dfrac{1}{(x^2 - 7)^{\frac{-1}{2}}}}[/tex]

Using the above formula, we can write it as :

[tex]\implies \mathsf{\dfrac{1}{\dfrac{1}{(x^2 - 7)^{\frac{1}{2}}}}}[/tex]

[tex]\implies \mathsf{(x^2 - 7)^{\frac{1}{2}}}[/tex]

[tex]\implies \mathsf{\sqrt{x^2 - 7}}[/tex]