Point A (-6,8) and Point B (6,-7)

Answer:
[tex]\displaystyle \text{Midpoint} = \boxed{ \displaystyle \bigg(0,\frac{1}{2} \bigg) }[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Algebra I
Coordinate Plane
Midpoint Formula:
[tex]\displaystyle \bigg(\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2} \bigg)[/tex]
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle\text{Point A} (-6, 8) \\\text{Point B} (6, -7) \\\begin{aligned}x_1 & = -6 \\x_2 & = 6 \\y_1 & = 8 \\y_2 & = -7 \\\end{aligned}[/tex]
Step 2: Find Midpoint
Simply plug in your coordinates into the midpoint formula to find the midpoint:
∴ we have found the midpoint of the line segment AB.
___
Learn more about Algebra I: https://brainly.com/question/14872377
___
Topic: Algebra I
[tex]\huge\underline\mathcal{\red{A}\blue{n}\pink{s}\purple{w}\orange{e}\green{r} -}[/tex]
let the mid point be named P ( x , y )
Now ,
By Mid Point Formula ,
[tex]\bold{P(x,y) = ( \frac{ x_{1} + x_{2} }{2} \: , \: \frac{ y_{1} + y_{2}}{2} )} \\ [/tex]
According the the Question , we get to know that
[tex]\bold{x_{1} = - 6 \: \: \: , \: \: \: x_{2} = 6} \\ \\\bold{ y_{1} = 8 \: \: \: , \: \: \: y_{2} = - 7}[/tex]
Substituting the values in the mid point formula ,
[tex]\bold{P(x,y) = ( \frac{ - 6 + 6}{2} \: \: , \: \: \frac{8 + ( - 7)}{2} )} \\ \\ \bold{\implies \: P(x,y) = ( \frac{0}{2} \: \: , \: \: \frac{1}{2} )} \\ \\ \bold{\implies \: P(x,y) = (0,0.5)}[/tex]
hope helpful ~