Respuesta :

Answer:

22.6 feet

Step-by-step explanation:

Let x be the length of tree

tan(62) = x/12

x = 12tan(62)

x = 22.56871758

The height of the given tree is required.

The height of the tree is 22.57 feet.

[tex]\theta[/tex] = Angle of elevation = [tex]62^{\circ}[/tex]

s = Length of shadow = 12 feet

t = Tree height

From the trigonometric ratios we get

[tex]\tan \theta=\dfrac{t}{s}\\\Rightarrow t=s\tan\theta\\\Rightarrow t=12\times \tan62^{\circ}\\\Rightarrow t=22.57\ \text{feet}[/tex]

The height of the tree is 22.57 feet.

Learn more:

https://brainly.com/question/4929040?referrer=searchResults

Ver imagen boffeemadrid