Respuesta :
By segment addition property, the lengths of the hypotenuse side of both
triangles ΔAFC and ΔDEB are equal.
Response:
- A statement/reason pair that can be used when proving [tex]\overline{FC}[/tex] ≅ [tex]\overline{EB}[/tex] is presented as follows: Statement; ΔAFC ≅ ΔDEB, reason; HL
Method used to obtain the above response
Please find attached the diagram representing the triangles
ΔAFC and ΔDEB overlap
Point B is located on side [tex]\mathbf{\overline{AC}}[/tex]
Point C is located on side [tex]\mathbf{\overline{BD}}[/tex]
∠AFC = ∠BED = 90°
[tex]\overline{FA}[/tex] ≅ [tex]\overline{ED}[/tex]
[tex]\overline{AB}[/tex] ≅ [tex]\overline{CD}[/tex]
A statement and reason pair that can be used to prove that [tex]\overline{FC}[/tex] ≅ [tex]\overline{EB}[/tex] is given as follows;
Statement [tex]{}[/tex] Reasons
[tex]\overline{FA}[/tex] ≅ [tex]\overline{ED}[/tex] [tex]{}[/tex] Given
ΔAFC and ΔDEB are right triangles[tex]{}[/tex] Definition of right triangles
[tex]\overline{AB}[/tex] = [tex]\overline{CD}[/tex] [tex]{}[/tex] Definition of congruency
[tex]\overline{BC}[/tex] ≅ [tex]\overline{BC}[/tex] [tex]{}[/tex] Reflexive property
[tex]\overline{BC}[/tex] = [tex]\overline{BC}[/tex] [tex]{}[/tex] Definition of congruency
[tex]\overline{AB}[/tex] + [tex]\overline{BC}[/tex] = [tex]\overline{CD}[/tex] + [tex]\overline{BC}[/tex] [tex]{}[/tex] Substitution property
[tex]\overline{BD}[/tex] = [tex]\overline{AC}[/tex] [tex]{}[/tex] Substitution and segment addition property
ΔAFC ≅ ΔDEB [tex]{}[/tex] Hypotenuse leg (HL) rule of congruency
[tex]\overline{FC}[/tex] ≅ [tex]\overline{EB}[/tex] [tex]{}[/tex] CPCTC
CPCTC is the acronym for Corresponding Parts of Congruent Triangles are Congruent
A statement/reason pair that can be used is therefore;
- ΔAFC ≅ ΔDEB / Hypotenuse leg (HL) rule of congruency
Learn more about congruency theorem here:
https://brainly.com/question/2102943
