Respuesta :

Answer:

10. ⅔ − ∛e

11. 79 + 3√3

Step-by-step explanation:

10. ∫ (1 + 1/x) dx

∫ dx + ∫ (1/x) dx

These are both standard integrals.

x + ln|x| + C

Evaluate between x = ∛e and x = 1.

(1 + ln|1| + C) − (∛e + ln|∛e| + C)

1 + 0 + C − ∛e − ⅓ − C

⅔ − ∛e

11. ∫₁³ (4x³ + ³/₂√x) dx

∫₁³ 4x³ dx + ∫₁³ (³/₂ x^½) dx

(x⁴ + x^(³/₂) + C) |₁³

(x⁴ + x√x + C) |₁³

(3⁴ + 3√3 + C) − (1⁴ + 1√1 + C)

81 + 3√3 + C − 1 − 1 − C

79 + 3√3

Wolfyy

The solutions and answers are in the picture below.

Best of Luck!

Ver imagen Wolfyy