Using laws of Sines. Find the measurement indicated. Round your answers to the nearest tenth.

Answer:
see below
Step-by-step explanation:
8.
We have to use the law of cosines to find AB
c^2 = a^2 + b^2 − 2ab cos(C)
AB^2 = 14^2 + 24^2 - 2 * 14 *24 cos(91)
AB^2 =196 +576 - 672 cos(91)
AB^2 =783.7280171
Taking the square root of each side
AB =27.99514
Rounding to the nearest tenth
AB = 28
(If the lengths are supposed to have the variable A)
AB = 28A
9.
Using the law of sines
sin 84 sin A
-------------- = -------------
22 9
Using cross products
9 sin 84 = 22 sin A
Divide each side by 22
9 sin 84 /22 = sin A
.406849866 = sin A
Taking the inverse sin of each side
24.00710132 = A
To the nearest tenth
A = 24
Answer:
AB = 28 ft; m<A = 24 deg
Step-by-step explanation:
8.
Since you are not given an angle and its opposite side, you cannot start with the law of sines. You must use the law of cosines.
[tex] c^2 = a^2 + b^2 - 2ab \cos C [/tex]
[tex] c^2 = (14~ft)^2 + (24~ft)^2 - 2(14~ft)(24~ft) \cos 91^\circ [/tex]
[tex] c^2 = 196~ft^2 + 576~ft^2 - 672~ft^2(-0.01745) [/tex]
[tex] c = \sqrt{783.73~ft^2} [/tex]
[tex] c = 27.995~ft [/tex]
AB = c = 28 ft
9.
[tex] \dfrac{\sin A}{a} = \dfrac{\sin B}{b} = \dfrac{\sin C}{c} [/tex]
[tex] \dfrac{\sin A}{a} = \dfrac{\sin B}{b} [/tex]
[tex] \dfrac{\sin A}{9~km} = \dfrac{\sin 84^\circ}{22~km} [/tex]
[tex] \sin A = \dfrac{9~km~\sin 84^\circ}{22~km} [/tex]
[tex] \sin A = 0.40685 [/tex]
[tex] A = \sin^{-1} 0.40685 [/tex]
[tex] A = 24^\circ [/tex]