Tyler simplified the expression x Superscript negative 3 Baseline y Superscript negative 9. His procedure is shown below.

x Superscript negative 3 Baseline y Superscript negative 9 = StartFraction 1 Over x cubed EndFraction times StartFraction 1 Over y Superscript negative 9 EndFraction = StartFraction 1 Over x cubed y Superscript negative 9 EndFraction

What is Tyler’s error?

Respuesta :

Answer:

[tex]y^{-9}\neq \dfrac{1}{y^{-9}}[/tex]

Step-by-step explanation:

Tyler simplified the expression: [tex]x^{-3}y^{-9}[/tex]  as shown below:

[tex]x^{-3}y^{-9}=\dfrac{1}{x^3}X \dfrac{1}{y^{-9}}=\dfrac{1}{x^3y^{-9}}[/tex]

We notice that in Tyler's work:

[tex]y^{-9}= \dfrac{1}{y^{-9}}[/tex]

Whereas, the correct form would have been:

[tex]y^{-9}= \dfrac{1}{y^{9}}[/tex]

Making our solution:

[tex]x^{-3}y^{-9}=\dfrac{1}{x^3}X \dfrac{1}{y^{9}}=\dfrac{1}{x^3y^{9}}[/tex]

Answer:

Both powers should be in the denominator with positive exponents.