Respuesta :

Answer:

The sample proportion is 0.253.

Step-by-step explanation:

We are given that a 90% confidence interval for a proportion is found to be (0.22, 0.28).

Firstly, as we know that the confidence interval for sample proportion is calculated as;

90% confidence interval = Sample proportion [tex]\pm[/tex] Margin of Error

Here, let [tex]\hat p[/tex] = sample proportion

Also, the level of significance = 1 - 0.90 = 0.10 or 10%

And, the critical value of z at 5% (two-sided) level of significance is 1.645.

So, 90% confidence interval =  [tex]\hat p \pm 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]

           (0.22 , 0.28)    =   [tex]\hat p \pm 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]

This means;  

          0.22  =  [tex]\hat p - 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]  -------------- [Equation 1]

          0.28  =  [tex]\hat p + 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]  -------------- [Equation 2]

From equation 1 and 2, we get;

           [tex]0.22 + 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} }= 0.28 - 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]

           [tex]1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} } + 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} }= 0.28 -0.22[/tex]

             [tex]2 \times 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} } =0.06[/tex]

                 [tex]\sqrt{\frac{\hat p(1-\hat p)}{n} } =\frac{0.06}{2 \times 1.645}[/tex]

                  [tex]\sqrt{\frac{\hat p(1-\hat p)}{n} } =0.02[/tex]

Now, squaring both sides, we get;

                    [tex]{\frac{\hat p(1-\hat p)}{n} } =0.0004[/tex]

                      [tex]n ={\frac{\hat p(1-\hat p)}{0.0004} }[/tex]

Now, putting value of n in equation 1, we get;

                    0.22  =  [tex]\hat p - 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{n} }[/tex]  

                    0.22  =  [tex]\hat p - 1.645 \times \sqrt{\frac{\hat p(1-\hat p)}{\hat p(1-\hat p)}\times 0.0004 }[/tex]

                    0.22  =  [tex]\hat p - 1.645 \times \sqrt{ 0.0004 }[/tex]

                    0.22  =  [tex]\hat p -( 1.645 \times 0.02)[/tex]

                    0.22  =  [tex]\hat p -0.033[/tex]

                      [tex]\hat p = 0.22 + 0.033[/tex] = 0.253

Therefore, the sample proportion  [tex]\hat p[/tex] is 0.253.