Answer:
The zeroes of a cubic polynomial [tex]x^{3}-27\cdot x[/tex] are [tex]0[/tex], [tex]-\sqrt{27}[/tex] and [tex]+\sqrt{27}[/tex].
Step-by-step explanation:
The zeroes of the third-order polynomial are obtained by factorization:
[tex]x^{3}-27\cdot x[/tex]
[tex]x\cdot (x^{2}-27)[/tex]
[tex]x\cdot (x+\sqrt{27})\cdot (x-\sqrt{27})[/tex]
The zeroes of a cubic polynomial [tex]x^{3}-27\cdot x[/tex] are [tex]0[/tex], [tex]-\sqrt{27}[/tex] and [tex]+\sqrt{27}[/tex].